
A Software Architecture for Distributed AR Applications

Gregory de Oliveira
Feijó*

Leonardo Pavanatto
Soares

Vicenzo Abichequer
Sangalli

Thomas Volpatto de
Oliveira

Márcio Sarroglia
Pinho

Virtual Reality Group - Computer Science School – PUCRS - Brazil

ABSTRACT

The recent advances in hardware technology expanded the scope

of Augmented Reality applications to mobile devices such as

tablets and smartphones. Given their limited battery resources,

distributed computing becomes a tempting approach to develop

AR applications. Although frameworks that support the

development of distributed AR systems exist, they are mostly

complex in their nature. In this article, we present a software

architecture that mainly targets distributed AR systems. As a

proof of concept, we developed three different applications based

on this architecture. The applications use different devices such as

smartphones, webcams and head mounted displays (HMD) and

allows the user to interact with the system in many different ways,

providing the user with realistic AR experience.

Keywords: Augmented Reality, Distributed Computing, Client-
Server, Mobile, Software Architecture.

1 INTRODUCTION

Augmented Reality is commonly associated with the
superposition of virtual elements in real images so that our
perception of the real world is enhanced with virtual elements
generated by computer devices such as desktops, laptops and
mobile devices. According to Danado et al. [1], an AR system
should provide a solution for the following tasks in order to create
more realistic AR experiences:

 Registration of computer generated images of virtual
elements on real images;

 Identification of the user position;
 Information retrieval;
 Data presentation.

Although the processing power of mobile devices is increasing
over time, the real time processing of all these tasks and its
limited battery duration makes AR impractical for a variety of
applications. Distributed computing can overcome these
limitations by splitting the application into modules that are
responsible for small portions of the whole process. By
cooperating together, the user can remotely interact with the
system, save battery in case of mobile devices and still have a
realistic AR experience.

There are some frameworks out there that use different
architectures for AR applications[2][3]. The DWARF framework
[2], for example, is a component-based framework based on the
concept of distributed services in which each service is controlled
by a service manager. The service manager defines the type of
information the service needs, what information it can offer to
other services and it establishes the connection between local and
remote services. The main drawback of the DWARF framework is
that it focuses on software engineering concepts to organize the
existing components. This approach leads to a high software

complexity and may be a hindrance for applications that need
specialized components that are not provided by the framework.
The MORGAN framework [2], is also a component-based
framework but it focus on multi-user applications. The system is
composed of a set of components that subscribe to input devices
such as trackers. A particular component called broker is
responsible to allow the manipulation of all the framework’s
components. The framework also implements its own rendering
engine, which may be an obstacle if a particular project demands
specific rendering tools.

In this article, we present a distributed software architecture for
AR applications. The architecture is based on a Client-Server style
that focuses on simplicity and easy implementation and allows the
user to naturally interact with the real environment. Different from
the architectures used in the other frameworks [2][3], our
architecture makes it easier to incorporate specialized components
since it only needs a client-side and a server-side implementation.
Furthermore, we do not restrict the use of specific technologies as
is the case of the MORGAN framework [2]. The following
sections of this article presents a brief description about the
distributed architecture and, as a proof of concept, two
applications were implemented using the presented architecture.

2 ARCHITECTURE DESCRIPTION

The architecture of the system is shown in Figure 1. The system is

based on a Client-Server architecture with three main processes

and a few central objects, as described in the two following

sub-sections.

Figure 1: AR System Architecture

2.1 Objects

The objects are the smallest units in the architecture and they are

responsible for specific tasks, such as tracking, interaction,

communication and the manipulation of real objects.

Tracking objects are responsible for obtaining both the position

and orientation of a given device or object of interest. Interaction

objects specify the types of interaction the user can perform inside

the system. The interaction may be to point to a real object, to

select a real object on the mobile screen or performing a sequence

of tasks, for example. Communication objects are the most

important objects in the architecture since they are responsible to

perform information exchange between the existing processes. For

*gregory_feijo@hotmail.com

every kind of information to be shared among application

processes, it should exist both client and server objects. The server

objects are responsible for packing the data and sending it through

the network while the client objects waits for incoming data from

the server object and makes it visible to the endpoint process.

Data objects specify how the real objects are recognized inside

the system. They mainly serve as containers for real objects

information.

2.2 Processes

Three main processes constitute the architecture: Server

Application, Client Application and Data Server. Others may be

created according to the target application needs.

The Server Application is the core of the AR system and runs

in a remote computer with high computational resources. This

process should establish a connection with a Data Server in order

to maintain all objects information available to clients and up-to-

date. The Server should also manage multiple user connections by

creating the necessary communication objects on the fly (tracking

clients, interaction clients and object server). It is also responsible

to perform the client desired interaction between users and the

existing real objects, leaving the application running in the users'

devices to be as light as possible. Whenever a user is interacting

with a real object, the server can forward the object's information

to the Client Application for further processing.

The Client Application is the application running in the users'

device. At startup, the client establishes a connection with the

Server Application and creates the necessary communication

objects in order to exchange information. The Client Application

is responsible to specify the type of interaction it desires and

perform the data presentation to the user, whenever a new object

is received from the server.

The Data Server works as a bridge between the AR system and

any other system that manages the real world objects. The Data

Server continuously checks the database for updates and forwards

any updated information to the Server Application. The

information can be anything meaningful for a given application,

such as the object’s description, images, multimedia, and so on.

3 DEMONSTRATION

As a proof of concept, we developed three applications based on

our architecture. For the demonstrations, the tracker object is

implemented based on the ARToolkit library (http://artoolkit.org),

but other technologies could also be used. The communication

object is performed using the VRPN library (http://vrpn.org). Both

data and interactions objects are implemented differently

depending on the application.

The first is a maintenance task application applied to a printer

(Figure 2a). In this demo, the data is a container for an image that

contains textual description about the task to be performed. The

interaction specifies the marker visible to the user so the server is

aware of the next step to forward to the client. The user wears a

HMD with a webcam attached and both connected to a desktop

machine. Whenever the user sees a marker, the tracker retrieves

its position and it is sent with the visible marker to the Server

Application by a communication object and remotely processed.

The server forwards back the image for the next step of the task.

In the second application (Figure 2b), the data is a container for

boxes spread around a pre-defined scenario and the interaction is

performed by pointing a webcam in the direction of the real object

the user is interested in. The user also wears a HMD and both its

position and the pointer’s are tracked by tracker objects and

forwarded to the Server Application whenever available. The

server then, applies a ray casting algorithm in order to find the

object and forwards its information to the client. In this

application, the objects are in fixed positions.

The third application (Figure 3) is quiet similar to the second,

but the user interact with the system using a mobile device for

both pointing and displaying the real objects information.

Furthermore, a tracking object is constantly tracking the real

objects position and feeding the database with updated

information. The Data Server is clearly more active in this

application since it propagates the updates to the Server

Application.

Figure 2: AR Applications using HMD. (a) Maintenance task

applied to a printer. (b) Real object pointer application.

Figure 3: Real object pointer application using a mobile device.

4 CONCLUSION

We presented a simple yet effective software architecture for

distributed AR systems. The architecture is composed of three

main processes that use a few central objects. Each object

individually contributes for a small portion of the AR system and,

together, they successfully deliver the user a realistic Augmented

Reality experience. As a proof of concept, three different

applications were developed using the central objects presented,

allowing a user to interact with the system in different ways.

5 ACKNOWLEDGMENTS

Our research is funded by FINEP NAVITEC Project. Grant

01.13.0360.00, Ref.: 1233/13

REFERENCES

[1] Danado, J., Dias E., Romão, T., Correia, N., Trabuco A., Santos C.,

Araújo D., Duarte, P., Rebocho, R., Palmeiro, J., Serpa, J., Costa M.

and Câmara, A.,“Mobile Augmented Reality for Environmental

Management(MARE)”. In EUROGRAPHICS 2003, 1-6, pp.121-128.

[2] Bauer, M.; Bruegge, B.; Klinker, Gudrun; MacWilliams, A.;

Reicher, T.; Riss, S.; Sandor, Christian; Wagner, M., "Design of a

component-based augmented reality framework,". IEEE and ACM

International Symposium on Aumented Reality , pp. 45-54, 2001.

[3] Ohlenburg, J., Herbst, I., Lindt, I., Fröhlich, T. and Broll, W. The

MORGAN framework: enabling dynamic multi-user AR and VR

projects. ACM VRST 2001, pp. 166-169.

